
3

PR
O

G
RA

M
M

IN
G

 A
N

D
 S

O
U

N
D

LABBOOK

TEENSYnth
DIY

/ TEENSYnth /

/ 2 /

This lab book is a set of instructions that will guide you through
building the TEENSYnth. The TEENSYnth lets you use fruit to
play sound! It’s built using a Teensy, a microcontroller that can
be programmed to do many things.

Levels of difficulty:

1. AN INQUIRING MIND
Suitable for anyone

2. RESEARCHER
I'm not familiar with the field, but I'll manage with a
bit of effort

3. EXPERT
I have enough knowledge to work independently

4. MASTER
I'm quite skilled and possess an in-depth
understanding of the tricks of the artistic and scientific
trades

5. DEVELOPER
I have sufficient knowledge to be capable of guiding
those from categories 1–3

6. MENTOR
I understand the content, I’ve mastered the
technology, I develop new knowledge independently
and pass it on to others

LABBOOK

TEENSYnth
Programming and sound.3
Author: Tara Pattenden

Creative Commons:
This work is licensed under a Creative Commons
Attribution 4.0 International license.

/ TEENSYnth /

/ 3 /

Index
TEENSYnth ... 4

What do we need? .. 4

Set up the Arduino software .. 6

What is the Teensy? ... 12

Preparing your Teensy to use with a breadboard 15

Exercise 1 - Fruit sounds ... 18

Exercise 2 - Playing with pitch/ Looking at Code 22

Exercise 3 - Reading inputs ... 25

Coding the Teensy .. 27

Exercise 4 - Add more fruit ... 38

Exercise 5 - Controlling Pitch .. 42

Appendices .. 46

About the Author ... 48

Credits .. 49

Notes .. 50

/ TEENSYnth /

/ 4 /

TEENSYnth
This lab book is a set of instructions that will guide you through building
the TEENSYnth. The TEENSYnth lets you use fruit to play sound! It’s built
using a Teensy which is a microcontroller that can be programmed to do
many things. This book will include other projects and resources so you
can continue building different things with the Teensy after the workshop
is over. We will build one and explore the world of sound and sensors.

What do we need
1. Teensy 3.2 with pins

2. Breadboard

3. Jumper wires

4. Wire (cca 15-20 cm long)

5. Audio output

6. Headphones or speaker

7. USB data cable - micro USB to USB A

8. Computer with Arduino installed

9. A piece of fruit

OPTIONAL:

10. 2 x 10K LIN potentiometer

11. LDR resistor

/ TEENSYnth /

/ 5 /

4. 5.

6.

9.

7.

10. 11.

1.

2. 3.

/ TEENSYnth /

/ 6 /

Set up the Arduino software
Let’s start by setting up and testing the Arduino software on your
computer.

Step 1 - install the required software
We communicate with the Teensy by using the Arduino software. You will
need to install this to code for Teensy.

Download the following software:
Arduino IDE

https://www.arduino.cc/en/Main/Software

Teensyduino

https://www.pjrc.com/teensy/td_download.html

Install Arduino
Install and then run the Arduino software. Close the
Arduino software.

If you are on a Windows machine - do not choose
the app option as it will not allow you to install the
Teensyduino software that is needed.

https://www.arduino.cc/en/Main/Software
https://www.pjrc.com/teensy/td_download.html

/ TEENSYnth /

/ 7 /

Install Teensyduino
The Arduino software doesn’t have built-in support for the Teensy, so you
must run the Teensyduino installer to add the Teensy files to your Arduino
software.

The installer asks for the location of your Arduino software. Select the
location where you installed Arduino. The "Next" button will only activate
when a folder containing the Arduino software is selected.

Keep clicking "Next" until the installation is
completed.

For Windows Users
If you are using Windows, you should also run this
Windows Serial Installer from
https://www.pjrc.com/teensy/serial_install.exe.
Choose the "USB Serial" option, this will allow the
Windows Found New Hardware Wizard to properly
find the driver for the Teensy.

https://www.pjrc.com/teensy/serial_install.exe

/ TEENSYnth /

/ 8 /

Step 2 - Test the Arduino software
We will test that you have the software running correctly by loading a
program onto the Teensy that will make its on board LED blink.

To do this open the file: File > Examples > 01. Basics > Blink

Now we need to send the program to our Teensy.

There are a couple of steps we need to set up first:

Set the board in Arduino
Check that the correct board is set in the program. This can be done in
the tools menu

Tools > Board> Teensy 3.2/3.1

/ TEENSYnth /

/ 9 /

Select the port in Arduino
Under the tools menu Tools > Port > Select the port that says Teensy

Step 3 - Compile and Upload
Now we will compile the code and upload it to the Teensy. Compiling the
code is done by the software, it means that it is being made into a format
that the Teensy can read.

Connect the Teensy to your computer with the USB cable.

In Arduino software, go to the menu Tools > Boards > and choose Teensy
3.2.

Then go to Tools > Port > and select the port that says Teensy.

Now click the upload arrow at the top right of the sketch:

/ TEENSYnth /

/ 10 /

The program will verify the code, compile it and then upload it to the
Teensy board.

The tick button just compiles and verifies the code but does not upload it
to a connected microcontroller.

Once the blink code is uploaded to your Teensy, the led on it should start
blinking.

Common Arduino software issues
If your code does not upload there are several common problems what it
could be. When there is an issue with the Arduino an error message shows
at the bottom of the screen.

For example - in this case I don’t have the Teensy connected to the
computer.

Things to check if your program is not loading:

Are you using a data rated USB cable?

Have you selected the correct port?

Have you selected the correct board?

Check to see if the Teensy loader is giving you an instruction.

https://coolcomponents.co.uk/blogs/news/common-arduino-issues

https://coolcomponents.co.uk/blogs/news/common-arduino-issues

/ TEENSYnth /

/ 11 /

Teensy Loader
The Teensy Loader is how your Teensy board communicates with the
Arduino software. It installs automatically with Teensyduino that you
installed earlier. It runs in the background and generally you don't need to
use it. However sometimes you may see an error message that you need
to manually operate it - in these cases you press the button on the Teensy
to enter manual mode and upload the program to it.

/ TEENSYnth /

/ 12 /

What is the Teensy?
Let's start by looking at the Teensy. Teensy is a type of microcontroller. A
microcontroller is like a small computer that can run a program. It has 22
connection points that can be used as inputs and outputs - this is decided
in the programming.

We will be detecting touch input from an apple and use that to play a
sound.

There are many versions of the Teensy available. We will be using a
Teensy 3.2 as it is suitable for our requirements.

9 of the connection points on the Teensy can be used for capacitive touch.
This is what we will use to make a piece of fruit play a sound.

What is capacitive touch?
Capacitive touch is a proximity sensing technology. Capacitive sensors
work by generating an electric field, and detecting nearby objects by
sensing whether this field has been disrupted.

Capacitive sensing is all around us. It’s the same technology used by
smartphone screens to detect touch.

Many everyday objects can be used as a capacitive touch sensor, they just
need to be made of a material that is conductive - that is, it conducts
electricity. Objects made from most metals are good conductors. Fruit and
organic matter are also conductive and can be used as sensors. How cool
is that!

/ TEENSYnth /

/ 13 /

Let’s take a look at the Teensy 3.2

Your Teensy will probably have terminal pins already attached and will
look like this.

Each of these legs on the Teensy connects to an input/output. These are
called pins. The pins can be programmed to do a variety of things. We are
going to use them for capacitive touch.

Pin 0, 1, 15, 16, 17, 18, 19, 22 and 23 can be used for capacitive touch.

/ TEENSYnth /

/ 14 /

Breadboard
This is a solderless breadboard. It allows you to hook up things to the
Teensy without using any soldering.

Colored lines mark the holes that are connected inside the breadboard

Inside the breadboard are bits of copper that connect the holes that are in
the same row.

/ TEENSYnth /

/ 15 /

Preparing your Teensy to use
with a breadboard
Depending on the parts you have, you many need to do a bit of soldering.
There is a great comic called “Soldering is Easy” that you can download
for free from the following location - https://mightyohm.com/files/
soldercomic/FullSolderComic_EN.pdf

Teensy
The Teensy can come with or without pins. If it does not have pins you will
need to solder them down both lengths of the Teensy so that you can use
it with the breadboard.

You can use a strip of male pin header like this:

Tip: place the pins in the breadboard and put the Teensy on top to
hold them in place while you solder. Solder fairly quickly so that
they don’t heat up too much and melt the breadboard.

Teensy 3.2 with pins Teensy 3.2 without pins

https://mightyohm.com/files/soldercomic/FullSolderComic_EN.pdf

/ TEENSYnth /

/ 16 /

To access the connections of the Teensy, we will
solder 5 female pin headers on top of the board,
so we can connect to these without having them
connect to the breadboard. Your Teensy should
come with soldered input connectors across
this bottom row. If it does not you will need to
solder this connection on yourself.

Audio
If your audio jack does not have any wires on it, you will need to solder
wires to it. One leg of the audio input will be for ground, the other is for
the audio output.

We will be using an audio jack to connect a
speaker to the DAC. This connector is a
stereo connector. The Teensy output is a
mono connection. You can use a stereo or
mono jack.

How do audio jacks work?
TS & TRS connectors are commonly used for audio. They come in different
physical sizes, the most common are 3.5mm (minijack) and 6.35mm
(guitar jack). TS is a mono connector and TRS is a stereo connector. They
stand for: Tip Sleeve; and Tip Ring Sleeve.

/ TEENSYnth /

/ 17 /

This image is of 6.5mm TRS & TS plugs. The
tip, ring and sleeve are all separate
connections. The sleeve connects to ground
and the tip and ring to the mono or stereo
channels.

The plug and jack connect together like this:

DAC Output on the Teensy
The audio output (DAC = Digital Analogue Converter) is on pin A14/DAC of
the Teensy. It is at the bottom end of the Teensy, opposite side to the USB
port.

/ TEENSYnth /

/ 18 /

Exercise 1 - Fruit sounds
Step 1
Download the project files. The files that you require can be found at
https://github.com/problemmaths/TEENsynth

Click on the button that says code and select the “Download ZIP” option
to download all the files. Unzip them to a folder on your computer and
remember where you have saved them.

Step 2
Place the Teensy on the breadboard so that it sits across the middle ditch
and press firmly until the pins are completely inside the board. Connect
the Teensy VCC (+) and GND (-) to the breadboard. Some of the parts we
are going to add will need to be connected to power and ground. We will
take the power from the Teensy and connect it to the side rails so we can
use them for positive (+) and negative (-) power.

https://gitlab.com/kons-platforma/teensynth

/ TEENSYnth /

/ 19 /

 Step 3
Attach the red wire from the audio connector to the DAC - which is on the
opposite side of the board to the USB input (check the chart on page 13 if
you need a reference) and the black wire from the audio input to the GND
on the breadboard.

Step 4
Attach the apple to pin 23 (A9). Stick the end of the jumper wire straight
into the apple!

/ TEENSYnth /

/ 20 /

Step 5
Plug in the USB cable to power the Teensy.

Step 6
Open the file called one_osc_touch.ino in the
Arduino software. Compile and upload it to your
Teensy by pressing the arrow symbol as you have
done earlier.

Step 7
Plug in your headphones to the audio output.

https://gitlab.com/kons-platforma/teensynth/-/raw/main/One%20Oscillator%20touch/one_osc_touch/one_osc_touch.ino?inline=false

/ TEENSYnth /

/ 21 /

Step 8
Touch the apple, it should make a sound when you touch it. WOW!!!

Let’s experiment with some different materials instead of the apple to see
which materials are conductive - swap out the apple for something else
and see if it’s conductive. There is a list of materials you can try out in the
appendix of this document.

/ TEENSYnth /

/ 22 /

Exercise 2 - Playing with
pitch & Looking at Code
Now let’s play around with the code to change the sound. We will explain
what is happening in the code after this, for now we will just alter the
relevant code.

Step 1 - Open Arduino
Open the document called one_osc_touch.ino.

This is the program that you need to load onto the Teensy to make the
piece of fruit play a sound.

Turn on Line numbers
We will be referring to the line number in the code later on. To see the line
numbers in your Arduino code, go to the file menu > preferences (on Mac
you need to go to Teensyduino in the top bar). Here you can check the
box that says Display line numbers.

/ TEENSYnth /

/ 23 /

Step 2 - Alter the code
Navigate to line 27 of the code.

It should say:

waveform1.begin(0, 100, WAVEFORM_TRIANGLE);

This line of code sets up the sound properties, that is the volume, pitch
and waveform type.

We want to change the pitch. That is the second number in the brackets in
Hz.

The human hearing range is commonly given as 20 to 20,000 Hz, although
there is considerable variation between individuals. 20hz would be a very
low pitch sound and 20,000hz would produce a very high pitch sound.

https://www.szynalski.com/tone-generator/

Let’s change that second number - choose
something between 20 – 20.000.

Step 3 - Compile & Upload
Now we will compile the code and upload it to the Teensy. Compiling the
code is done by the software, it means that it is being made into a format
that the Teensy can read.

Connect the Teensy to your computer with the USB cable.

In Arduino software, go to the menu Tools > Boards > and choose Teensy
3.2.

Then go to Tools > Port > and select the port that says Teensy.

https://www.szynalski.com/tone-generator/

/ TEENSYnth /

/ 24 /

Now click the upload arrow at the top right of the sketch.

The program will verify the code, compile it and then upload it to the
Teensy board.

The tick button just compiles and verifies the code but does not upload it
to a connected microcontroller.

Touch the apple and hear how the sound has changed.

Step 4 - Listen to different frequencies
Repeat steps 2 & 3, and try a few different frequencies. Here is a list of
which frequencies correlate to notes on the musical scale.

https://pages.mtu.edu/~suits/notefreqs.html

Step 5 - Listen to different wave types
Now, let’s listen to how the different waveforms sound. Change the type
of waveform on line 28, to one from the list below, the waveform type is
written straight after the frequency, it is currently set to
WAVEFORM_TRIANGLE. Once you have changed the waveform type,
compile and upload the code and listen to how the sound changes.

• WAVEFORM_SINE

• WAVEFORM_SAWTOOTH

• WAVEFORM_SAWTOOTH_REVERSE

• WAVEFORM_SQUARE

• WAVEFORM_TRIANGLE

https://pages.mtu.edu/~suits/notefreqs.html

/ TEENSYnth /

/ 25 /

Exercise 3 - Reading inputs
In this exercise we will use the Serial Monitor to see what data is being
sent when we touch the apple.

Step 1 - Open the Serial Monitor
Making sure the Teensy is plugged in, open the Serial Monitor in Arduino
software by clicking the magnifying glass icon in the top right corner of
Arduino. This will open a window which will have numbers running down
the screen. The Serial Monitor is a really useful tool that lets us observe
what is happening with the Teensy.

Step 2 - Touch the apple
Touch the apple while watching the Serial Monitor. You will see the
numbers change.

/ TEENSYnth /

/ 26 /

int thresh = 2300; // variable to store the touch threshold

Step 3 - Change the sensitivity
If you need to make your apple input more or less sensitive to touch, you
can do this by changing the threshold number that we use to tell if the
apple is being touched. We may need to change this if the apple doesn’t
recognise our touch or recognises it before we have touched anything.
This number should be higher than the numbers showing when you aren’t
touching the apple and lower than the numbers that show when you are
touching it.

Line 19 of our program is where we set the threshold number.

Serial.begin(9600);

I found that 2300 works well for a variety of fruit. Including the apple.

Step 4 - Upload and test
Compile and upload your altered code and then play with the apple to see
how it is affected.

Notes about the Serial Monitor
This following code defines what information is sent to the Serial Monitor.

In the setup - we connect to the Serial Monitor with the following code on
line 33. If this code is not there the Serial Monitor will not connect to the
Teensy.

Serial.println(current);

In the loop section of the code, we tell the Serial Monitor which
information we would like to monitor. Using this code on line 50. In this
case, current is a variable which holds the capacitive touch data.

/ TEENSYnth /

/ 27 /

Coding the Teensy
In this section we will look in depth at the code to play the apple using
capacitive touch.

The Audio System Design Tool
Teensy tool for sound design is called The Audio System Design Tool. The
audio tool can be used to set up the sound that you want to access with
the code. It is a way to visually set up sounds, effects and mixers. It
creates the code for you and is a great time saver. This is what the audio
setup for the one fruit touch project looks like.

// Two slashes in front of the line mean that this is a comment and

// won't be read when compiling the program. You can use them to

// describe what is happening.

General info
The Teensy program is written in Arduino software in C++. Once you have
written the code, it needs to be verified and compiled so that it can be
sent to the Teensy. The verification process checks for any mistakes in the
code - the code is case sensitive and punctuation marks are important.

We will start by using the code in the document. Don’t worry if you don’t
know anything about coding. For now we can get started by running and
altering the code provided. This is a good way to learn.

If you look at the code in Arduino, there are comments throughout that
explain what the code does.

/ TEENSYnth /

/ 28 /

Let’s look at the code
Open the file one_osc_touch.ino in Arduino. This is the code that is
currently on the Teensy that made the fruit play. Now let’s have a look at
the code that makes this work. The concepts and code will be explained
along the way.

//One oscillator capacitive touch
// using lots of code from Sebastian Tomczak
// https://little-scale.blogspot.com/2017/05/teensy-36-basics-
touchread.html
// this loads libraries that are required by Teensy
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>

Loading libraries
This is the start of the document where we put information about what the
code does and load the required libraries - the libraries are the items that
end in .h. The code for the libraries is written for us using the audio editing
tool, as you will see later.

// GUItool: begin automatically generated code
AudioSynthWaveform waveform1; //xy=387,283
AudioOutputAnalog dac1; //xy=549,283
AudioConnection patchCord1(waveform1, dac1);
// GUItool: end automatically generated code

This code sets up the synthesizers we will be accessing - it is generated
by the Audio Editing Tool.

/ TEENSYnth /

/ 29 /

What is a variable?
Here we set up the variables. Variables are virtual containers that store
information under a name that we decide. To create a variable in Arduino,
we declare the type of variable and the variable name and any value we
want to assign to it - we don’t need to assign something immediately.

There are many reasons to use variables in coding. Some of these reasons
are:

Efficiency - We use variables to save us time and so that we can easily
make changes in the future. For example, we set up a variable called
touchRead_pin, this variable stores the number of the input pin we will
use to detect touch, it is referred to several times later in the code. If we
want to change the number we can do it here in the variable. We could
just use the pin number A9 throughout the code instead of a variable., but
if we want to change it in the future we would have to look through the
code and find everytime we used it and change it. It is much simpler to
use a variable in this case

Storing dynamic data - Another reason to use a variable is to store data
that is changing from an input.

There are different types of variables to store different types of data. We
are using int and float.

Float - A float must be a number, it can contain decimals

Int - Integers are your primary data-type for number storage. They can
only contain whole numbers, they can’t contain decimals

/ TEENSYnth /

/ 30 /

What is a function?

//set up variables
int touchRead_pin = 0; //variable to store the input pin
int thresh = 2300; // variable to store the touch threshold
int play_flag = 0; // variable that flags if sound is being played or not 1
= playing; 0 = not playing
int current; // variable used to store the value from the touch input pin

Void Setup()
This is necessary to run your code. The code in between the {} is run once
at the start of your program running.

void setup() {
// put your setup code here, to run once:

AudioMemory
This is how you allocate audio memory to the Teensy to be used
exclusively by the audio library. PUT AMOUNT!

AudioMemory(50); // Dynamic memory is allocated to be used
exclusively by the Audio library

Waveform.begin()
Setup the synthesizer sound with the parameters of volume, frequency
and waveform type.

waveform1.begin(0, 100, WAVEFORM_TRIANGLE);
// this sets up the parameters of the wave form (volume, frequency,
waveform type)

/ TEENSYnth /

/ 31 /

Serial Monitor
You can use the Serial Monitor to see what data is being sent on the
inputs. This code sets up the communication with the Serial Monitor, later
we tell it what to monitor. 9600 is the speed at which the data is
transmitted to the Serial Monitor. The data rate is measured in bits per
second (baud).

// initialize serial communication with computer - sets up the serial
// monitor

 Serial.begin(9600);

Void loop()
The program runs through the items in the loop - the code within the {}
then goes back to the start of the loop and does it again. This happens
very very fast.

// This is the loop, the program runs through these items then goes
back to the start of the loop and does it again.
// This happens very very fast.
void loop() {
}

/ TEENSYnth /

/ 32 /

TouchRead()
The TouchRead function is used to read the value of the touch input.
Touch read reads the electric field surrounding it and its value is changed
when the sensor is touched. Look at the number as it changes, and take
notice of what it is - a general guide for this threshold is 2300 if you need
to change the sensitivity of the capacitive touch object, change this
number in response to what you see in the Serial Monitor.

First we set the variable current to store the data coming from the
capacitive touch from the apple.

current = touchRead(touchRead_pin); // setting the ‘current’ variable
// Now the value from the touchRead function is compared to the
threshold value.

We set up variables to store this information at the start of our program.
The variables are current, thresh and play_flag. Our threshold variable -
thresh - is set to 2300.

If()
An if statement checks to see if something particular is happening. If it is
happening, the code within the {} is executed, if it isn’t happening we
move on to the next bit of code. We have two if statements here to check
if the apple is being touched and if the sound is playing.

/ TEENSYnth /

/ 33 /

State Indicated by Outcome
New Apple Touch The touch value from

the apple - current - is
higher than the
threshold and the
sound is not playing.

Set the play flag to
equal 1 to indicate
playing. Turn the
volume up.

Still touching apple The touch value from
the apple - current - is
higher than the
threshold and the
sound is playing.

Do nothing.

Stopped touching apple The touch value from
the apple - current - is
lower than the
threshold and the
sound is playing.

Set the play flag to 0 to
indicate no sound. Turn
the volume off.

Apple not being
touched

The apple is not being
touched - the touch
value from the apple -
current - is lower than
the threshold and the
sound is not playing
indicated by the play
flag being 0.

Do nothing.

There are four different states our synth could be in with different actions
required depending on what the state is.

 if(current > thresh && play_flag == 0) {
play_flag = 1;
waveform1.amplitude(0.2); // turn the volume up to 0.2 - 1 is

full volume.
 }

/ TEENSYnth /

/ 34 /

If the apple is being touched, the touch value - current - will be greater
than the threshold. If it is also a new touch, i.e. your hand wasn’t touching
the apple already, the play_flag will be set to 0.

If the touch value - current - is above the threshold - thresh - and the note
is currently not playing - play_flag is equal to 0 - then a note on event is
generated and the play_flag variable is set to 1 indicating that there is now
a note playing.

If the touch value - current - is above the threshold - thresh - and the note
is playing - play_flag is equal to 1 -, no action is taken

Apple is not being touched, and the sound is playing.

 if(current < thresh && play_flag == 1) {
play_flag = 0;
waveform1.amplitude(0); // turn the volume to 0 - no sound

 }

If the touch value is below the threshold and the note is currently playing,
then a note off event is generated and the play flag is set to 0 indicating
that there is not currently a note playing. If the touch value is below the
threshold and the note is currently not playing, no action is taken.

Serial.println(current); // this sends the data from the input pin which
is stored in the variable - “current” - to the serial monitor

Delay()
A delay measured in milliseconds. We have a short pause before the loop
goes back to the start and replays.

 delay(100);

/ TEENSYnth /

/ 35 /

AudioSynthWaveform
We refer to this as a variable in the code so that we can have multiple
instances of it.

Look for waveform and waveform2.

Properties - waveform, amplitude, frequency

Waveform is the type of wave used. Supported waveforms are:

• WAVEFORM_SINE

• WAVEFORM_SAWTOOTH

• WAVEFORM_SAWTOOTH_REVERSE

• WAVEFORM_SQUARE

• WAVEFORM_TRIANGLE

• WAVEFORM_TRIANGLE_VARIABLE

• WAVEFORM_ARBITRARY

• WAVEFORM_PULSE

• WAVEFORM_SAMPLE_HOLD

Frequency
This controls the pitch of the sound. The human hearing range is
commonly given as 20 to 20.000 Hz, although there is considerable
variation between individuals. 20 Hz would be a very low pitch sound and
20.000 Hz would produce a very high pitch sound.

Amplitude
This controls the volume of the sound using a value between 0 - 1, where
0 is no volume and 1 is full volume.

Functions
You can set all the parameters of the waveform in one function like this:

 variableName.begin(level, frequency, waveform);

/ TEENSYnth /

/ 36 /

In our code it looks like this, where waveform1 is the variable name for
the waveform we refer to. This sets the volume to 0.5, the pitch
(frequency) of the waveform to 300 Hz and the type of waveform to be a
sine wave.

You can also set the waveform parameters individually like this:

begin(waveform);
Configure the waveform type to create.

Eg:

waveform1.begin(0.5, 300, WAVEFORM_SINE);

frequency(freq);
Change the frequency.

Eg:

waveform1.begin(WAVEFORM_SINE);

amplitude(level);
Change the amplitude. Set to 0 to turn the signal off.

Eg:

waveform1.frequency(300);

waveform1.amplitude(0.5);

/ TEENSYnth /

/ 37 /

Exercise 4 - Add more fruit
Now let’s add a second apple to the Teensy so that we can have two
notes.

Step One
Connect pin 22 (A8) of the Teensy to the second apple.

Step Two
Load the file two_oscillators_touch.ino.

/ TEENSYnth /

/ 38 /

Step Three
Upload the Arduino file two_oscillators_touch.ino to the Teensy and now
listen to both apples.

Let’s look at the code
These are the steps you need to follow to add the second apple to the
Teensy. Have a look at these notes and then follow the same steps to add
a third apple.

Step 1 - Update the Audio Design Tool

To add an extra apple into the code, we need to update the waveforms in
the audio design system. And because we have more than one sound we
also need to use a mixer.

Add in a mixer and an extra waveform. Connect the waverforms and the
mixer as in this picture.

Select Export code and then paste it over the code at the start of the
document up to where it says:

https://www.pjrc.com/teensy/gui/

// GUItool: end automatically generated code

https://www.pjrc.com/teensy/gui/

/ TEENSYnth /

/ 39 /

Generated code

#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>

// GUItool: begin automatically generated code
AudioSynthWaveform waveform1; //xy=290,213
AudioSynthWaveform waveform2; //xy=291,266
AudioMixer4 mixer1; //xy=487,237
AudioOutputAnalog dac1; //xy=632,237
AudioConnection patchCord1(waveform1, 0, mixer1, 1);
AudioConnection patchCord2(waveform2, 0, mixer1, 2);
AudioConnection patchCord3(mixer1, dac1);
// GUItool: end automatically generated code

Step 2 - Add new variables

Duplicate the variables that we use to refer to the apple and its data.

First, we need to add a new variable so that we can tell the difference
between the two apples. You will need to add a 2 at the end of the new
variable name.

Add the following code on line 22 after the variable setup. This sets up
new variables for the second piece of fruit that you will add.

//variables for the second piece of fruit
int touchRead_pin2 = A8; //variable to store the second input pin
int thresh2 = 2300; // variable to store the second touch threshold
int play_flag2 = 0; // variable that flags if sound from the second apple
is being played or not 1 = playing; 0 = not playing
int current2; // variable used to store the value from the second touch
input pin

/ TEENSYnth /

/ 40 /

At line 51 (approximately, yours may be slightly different), after where the
current variable is set, paste this code:

current2 = touchRead(touchRead_pin2); // setting the 'current2'
variable

Step three - Set up the sound parameters

At line 37 after waveform1 parameters are set

waveform1.begin(0, 180, WAVEFORM_TRIANGLE); // this sets up the
parameters of the second wave form

Step Four - Check if the sound is playing

Check if the sound is playing when the apple is being touched. This
changes the volume of the apple sound accordingly.

Add this code for the second apple checking if it is playing at line 60 after
the first play flag is checked.

//repeat for the second apple
 if(current2 > thresh && play_flag2 == 0) {

play_flag2 = 1;
waveform2.amplitude(0.2); // turn the volume up to 0.2}

//repeat for the second apple
 if(current2 < thresh && play_flag2 == 1) {

play_flag2 = 0;
waveform2.amplitude(0); // turn the volume to 0 - no sound}

Step 5 - Add more apples

That is all you need to do to add more apples. Now you try adding a third
apple giving new variables a number 3 instead of 2

/ TEENSYnth /

/ 41 /

Note: if the pitch is moving in the wrong direction then try changing
which side the ground and power are connected to on the
potentiometer.

Exercise 5 - Controlling Pitch
In this exercise we will add pitch control to the apple.

Step One
Remove the second apple from the breadboard.

Step Two
Add a potentiometer to the breadboard

• Connect its middle pin to pin 11 on the Teensy.

• Connect the left pin to the power.

• Connect the right pin to ground.

/ TEENSYnth /

/ 42 /

Step Three
Open the file one_osc_pitch.ino then compile and upload it to the Teensy.
The potentiometer will now control the pitch while you touch the apple.

Let’s look at the code that makes that happen, in particular the new
elements of the code used to set up the potentiometer.

You can see on line 22 we set up the following variables:

int pitchPin = A0; // variable storing which pin the pitch potentiometer
will connect to
float pitchData; // variable used to store the data coming from the
pitch potentiometer
float scaledPitch; //variable used to store the scaled data from the
pitch potentiometer

As you can see from the comments in the code:

pitchPin is the variable that will store which pin we connect the middle
pin of the potentiometer to.

pitchData is the variable which will store the values being sent from the
potentiometer. Potentiometers will output a range from 1 - 1023.

scaledPitch is the variable which will be used to store the scaled value -
this is explained in more detail below.

In the loop, on line 44 we set the variable pitchData to read the values
coming in from the potentiometer.

pitchData = analogRead(pitchPin);
// Read the data coming from the pitch potentiometer and save it in
the variable pitchData

/ TEENSYnth /

/ 43 /

Map
Here we use the map function to map the range values output by the
potentiometer to the desired range of pitch.

Potentiometers put out a value from 1 – 1023 as you turn it. This is the
same for most standard potentiometers. We want to convert these
numbers into an audio frequency range. To do this we use the map
function to set our pitch range to be from 20 – 8.000 Hz.

The map function is really useful. It re-maps a number from one range to
another. That is, a value of fromLow would get mapped to toLow, a value of
fromHigh to toHigh, values in-between to values in-between, etc.

You write the function like this:

map(value, fromLow, fromHigh, toLow, toHigh)

If you look in our code you can see that we are mapping the
potentiometer range 1 – 1023 to an audible frequency range, in this case
we are using 20 – 8.000 Hz.

scaledPitch = map(pitchData, 1, 1023, 20, 8000);
// Scale the value from the 'pitchData' variable and store it in the
'scaledPitch' variable

You can experiment with the numbers here to change the range of pitch in
the potentiometer. Remember human hearing ranges from 20 to 20.000
Hz, however our hearing is most sensitive in the 2.000 – 5.000 Hz
frequency range.

Controlling the pitch
Now we set the pitch of the waveform to be controlled by the
potentiometer. The scaledPitch variable is the mapped potentiometer
output.

waveform1.frequency(scaledPitch); // Set the frequency of waveform1
to the value of the 'scaledPitch' variable.

/ TEENSYnth /

/ 44 /

Using an LDR
You could use an LDR (light dependent resistor) also known as a
photoresistor instead of a potentiometer. As the LDR only has two legs
and the potentiometer has three we need to wire it slightly differently.

One leg of the LDR needs to go to both ground - through a small resistor
(3.3 – 10K) and the input pin A0 of the Teensy, the other leg goes to the
positive power (+ v)

It would look something like this:

[Image source: Fritzing]

/ TEENSYnth /

/ 45 /

Appendices
Conductivity of Materials
Here are some examples of materials that are conductive and non-
conductive.

Conductive materials
aluminium

platinum

gold

silver

ionised water

plants & fruit

iron

steel

brass

bronze

graphite

Non-conductive materials
teflon

glass

rubber

oil

pure water

fibreglass

porcelain

ceramic

air

cotton

wood

plastic

Breadboard
More information:

https://www.sciencebuddies.org/science-fair-
projects/references/how-to-use-a-breadboard

https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard

/ TEENSYnth /

/ 46 /

Teensy pinout

/ TEENSYnth /

/ 47 /

Types of sound waves/What does sound look
like?
Sound is made up of vibrations, or sound waves, that we can hear. These
sound waves are formed by objects vibrating (shaking back and forth). The
size and shape of sound waves determines the kind of sound heard. We
can draw what the sound wave looks like.

Codes
https://gitlab.com/kons-platforma/teensynth

https://gitlab.com/kons-platforma/teensynth

/ TEENSYnth /

/ 48 /

About the Author
Tara Pattenden is an artist, organiser and educator who works with a
range of new media including electronics, sound, video and sculpture.
Under the name Phantom Chips she uses the Teensy to make and perform
with wearable, fabric-based electronic instruments that enable new
expressive ways to play music. Her instruments invite audience
participation by creating sound through movements and gestures
(stretching, stroking and squeezing). She is based in Brisbane, Australia
where she runs Elektrolab - a space for learning creative technologies.
https://www.phantomchips.com/

https://www.phantomchips.com

/ TEENSYnth /

/ 49 /

Credits
Title
TEENSYnth, DIY

Labbook author
Tara Pattenden

Labbook editor
Tina Dolinšek

Technical editor
Lovrenc Košenina

Testing and review by
Tina Dolinšek, Lovrenc Košenina, Dunia Sahir, Uroš Veber and Rea
Vogrinčič

Photos
Matjaž Rušt, Rea Vogrinčič, Fritzing

TEENSYnth Github
https://github.com/problemmaths/TEENsynth

Production
konS platform
Projekt Atol Institute

Front page banner
https://pixabay.com/photos/coding-computer-hacker-hacking-1841550/

Place and publisher
Novo mesto, LokalPatriot

Year
2022

Series
Labbook kons, 8th book

Free online publication

https://github.com/problemmaths/TEENsynth
https://pixabay.com/photos/coding-computer-hacker-hacking-1841550/

/ TEENSYnth /

/ 50 /

Notes

/ TEENSYnth /

/ 51 /

CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

004.4:681.5:534(035)
004.2/.3(035)

PATTENDEN, Tara
 TEENSYnth : labbook : naredi sam (DIY) : programiranje in zvok 3 /
[avtorica Tara Pattenden ; fotografije Matjaž Rušt ; prevod Zadruga
Soglasnik]. - Novo mesto : LokalPatriot, 2022. - (Labbook kons ; knjižica 7)

ISBN 978-961-92137-6-6
COBISS.SI-ID 109368579

We create space in the hubs for young researchers and creative
individuals and groups. We dedicate ourselves to exploratory and
restless minds. With an inspiring program, we encourage the use of high
technologies and at the same time cultivate critical thinking, encourage
creativity and nurture innovation. Through active participation and
capacity development, we create new creative communities. Our
activities are intended for children, young people and the adult
interested public.

konS = the Platform for Contemporary Investigative Arts is an open and
evolving structure that seeks to establish links between communities,
knowledge institutions, research centres and the economy at a systemic
level, with all parties interested in co-creating a sustainable, safer and
more ethical future in a dynamic and constantly changing world.

Project konS – Platform for Contemporary Investigative Art is a project chosen based
on the public call for the selection of the operations “Network of Investigative Art and
Culture Centres”. The investment is co-financed by the Republic of Slovenia and by the
European Regional Development Fund of the European Union.

Partners:

